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Let f(z) = z+ Y., a,2" be analytic in the unit disk with the second coefficient a, satisfying |a,| = 2b, 0 < b < 1. Sharp radius of
Janowski starlikeness is obtained for functions f whose nth coefficient satisfies |a,| < cn+d (c,d > 0) or |a,| < ¢/n (c > 0 and n >
3). Other radius constants are also obtained for these functions, and connections with earlier results are made.

1. Introduction

Let &/ denote the class of analytic functions f defined in the
open unit disk D := {z € C : |z| < 1}, normalized by f(0) =
0 = f'(0) - 1, and let & denote its subclass consisting of
univalent functions. If f(z) =z + Y2, a,z" € &, de Branges
[1] obtained the sharp coefficient bound that |a, | < # (n > 2).
However, the inequality |a, | < n, n > 2, is not sufficient for f
to be univalent; for example, f(z) = z + 22> is clearly not a
member of §.

Several subclasses of & possess a similar coeflicient
bound. For instance, the nth coeflicients of starlike functions,
convex functions in the direction of imaginary axis, and
close-to-convex functions satisfy |a,| < n(n > 2) [2-4].
Other examples include functions which are convex, starlike
of order 1/2, and starlike with respect to symmetric points.
The nth coeflicients of these functions satisfy |a,| < 1 (n > 2)
[5-7]. The nth coeflicient of close-to-convex functions with
argument f3 satisfies |a,| < 1+ (n — 1) cosf3 [8], and the
coeflicients of uniformly starlike functions are bounded by
2/n [9], while |a,| < 1/n [10] for uniformly convex functions.
Simple examples show that these bounds are not sufficient
to characterize the geometric properties of the classes of
functions.

In the sequel, we will assume that f € o has the Taylor
expansion of the form f(z) = z + Y., a,z". Gavrilov [11]
showed that the radius of univalence for functions f € &
satisfying |a,| < n (n > 2) is the real root ry, = 0.164 of the
equation 2(1 - )’ = (1 +7) = 0, and the result is sharp for
f(z) =2z-z/(1 - z)*. Gavrilov also proved that the radius
of univalence for functions f € of satisfying the coeflicient
bound |a,| < M (n > 2)is 1 — \VM/(1 + M). The condition
la,| < M clearly holds for functions f € </ satistying | f(z)| <
M, and for these functions, Landau [12] proved that the radius
of univalence is M — VM? — 1. In fact, Yamashita [13] showed
that the radius of univalence obtained by Gavrilov [11] is also
the radius of starlikeness for functions f € & satisfying|a, | <
nor |a,| < M. Additionally, Yamashita [13] determined that
the radius of convexity for functions f € & satisfying|a,| < n
is the real root 7, = 0.090 of the equation 2(1 — M= (1+4r+
#*) = 0, while the radius of convexity for functions f € of
satisfying |a,| < M is the real root of

M+1)(1-r-M(+7r)=0. (1)

Recently, Kalaj et al. [14] obtained the radii of univalence,
starlikeness, and convexity for harmonic mappings satistying
certain coefficient inequalities.
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For two analytic functions f and g, the function f is
subordinate to g, denoted by f < g, if there is an analytic
self-map w of D with w(0) = 0 satisfying f(z) = g(w(2)). If
g is univalent, then f < g is equivalent to f(0) = g(0) and

f(D) < g(D).
For f € R\ {1}, « > 0, the class Z(«, 8) consists of
functions f € o satistying

2 ol !
2@ S @
fy  f
Denote by & (e, 3) its subclass consisting of functions f € of
satisfying
2 ol
@
f@®@

1+(1-2pB)z

1-z

)

L@

f () (BeR\{1},a20).

(3)

<fi-4

These classes were investigated in [15-24].

For f < 1, the class Z(0, B) is the class of starlike
functions of order f3, while, for the case 8 > 1, the class was
studied in [25-28].

The class ST [A, B] of Janowski starlike functions [29]
consists of f € ¢f satisfying the subordination

zf'(z) p 1+ Az
f(2) 1+ Bz

Certain well-known subclasses of starlike functions are spe-
cial cases of § T [A, B] for appropriate choices of the param-
eters A and B. For example, for 0 < 8 < 1, ST(B) :=
ST 1 - 2f3,-1] is the familiar class of starlike functions of
order . Denote by ST 4 the class ST = Z,(0,B) =
ST [1 - f3,0]. Janowski [29 ] obtained tﬁe sharp radius of
convexity for ST [A, B].

This paper studies the class &/, consisting of functions
f2) =z+Y2,a,2", (la| =2b, 0 < b < 1),in the disk D.
The subclass of univalent functions in &, have been studied
in [30-33]. In [33], Ravichandran obtained sharp radii of
starlikeness and convexity of order « for functions f € <,
satisfying |a,| < nor |a,] < M,n > 3. The author also
obtained the radius of uniform convexity and parabolic star-
likeness for functions f € &, satisfying |a,| < n,n > 3.

This paper finds radius constants for functions f(z) =
z+y2,a,2" € o, satisfying either |a,| < cn+d (c,d > 0) or
la,| < c/n (c > 0,n > 3). In the next section, sharp Z(«, f3)-
radius and ST [A, B]-radius are derived for these classes.
Several known radius constants are shown to be special cases
of the results obtained.

(-1<B<A<]1). (4)

2. Radius Constants

A sufficient condition for functions f € & to belong to the
class Z(a, ) is given in the following lemma.

Lemmal (see [24,34]). Let f e R\ {1} anda > 0. If f(2) =
z+ Y2, a,z" € o satisfies the inequality

o0

Z(om2+(1—oc)n—

n=2

then f € L(a, ).

B)la,| <1 - B, ®)
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Making use of this lemma, the sharp Z(«, )-radius is
obtained for f € &, satisfying the coefficient inequality
la,| < cn+d.

Theorem 2. Let 5 € R\ {1}, 6a+3 - >0, and « > 0. The
Z(a, B)-radius for f(z) = z + Yo, a,2" € d,, satisfying the
coefficient inequality |a,| < cn +d, ¢,d > 0, n > 3, is the real
root in (0, 1) of the equation

(c+d)(1-p)+[1-p|
+a+2-B)Q2c-b)+d)r)(1-1)*
=coc(l+4r+r2)+((l—oc)c+(xd)(1—rz)
+(1-a)yd—Pc) A -r)’ = Bd(1 7).

For B < 1, this number is also the £ \(«, B)-radius of f € f,,.
The results are sharp.

(6)

Proof. The number r, is the Z(«, B)-radius for f € o, if
and only if f(ryz)/r, € Z(a,f3). Therefore, by Lemma 1, it
is sufficient to verify the inequality

Blar <1-B, @

(o]

Z(om2+(l—oc)n

n=2

where 7, is the real root in (0, 1) of (6). Using the known
expansions

"
o = —1-r (8)
= 1-r1,
n
nry = = 1-2r,, 9)
n=3 (1 _To)2
< _ L+
nzrg b= 0 s — 1 —4r, (10)
n=3 (1-1p)
S 1+4ry+7,
wry ! 90 _1-8r, (11)
n=3 (1-1)
leads to
N 2 n—1
Z((xn +(1—(x)n—/3)|an|r0
n=2
<2(2a+2-B)br,
o0
+Z((xn +(1-a)n- ﬁ)(cn+d)r" !
n=3
1+4ry+72
=2(2a+2-p)brg+ca| —>—> - 1-8r,
(1-1p)
1+7,
+((1-a)c+ad) 3 —1-4n,
(1-1p)

+((l—a)d—ﬁc)<;)2—l—2r0>

(i)
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=(c+d)(B-1)-Q2a+2-B)(2(c-b)+d)r,
+ (ax(l +4r0+r§) +((1 —oc)c+ocd)(1 —ré)
+((L-@yd - o) (1-1,)’
- Bd(1 - 7’0)3) x (1- 70)74

~ 1Al
(12)
For 3 < 1, consider the function
fo(z) =z -2bz" - Z (cn+d)Z"
i (13)
3
=(c+1)z+2(c-b)Z - i 5= dz .
(1-2) 1-z
At the root z = 1, in (0, 1) of (6), f, satisfies
Re((xzzf”()(z) +zfé(z)>: _N(T’O) _ B (14)
fo(2) fo(2) D (1) ’
where
N(ry) = ~2(cb) Qe+ 1)y + 2020+ 1)
(1-1p)
6cocr§ Zdrg (Ba+1)
+
(1- 7’0)4 L=
(15)
. dry (6a+1)  2dria
(1_7’0)2 (1_7’0)3,
c dr}

D =c+1+2(c-b)ry— — - .
b =ertr2ie=tn -5 =i,

This shows that r is the sharp &(«, )-radius for f € </, For
B < 1, (14) shows that the rational expression N(r,)/D(r,) is
positive, and therefore the equality

Z2f @ @

@ e

holds. Thus, r,, is the sharp Z(«, )-radius for f € &/, when
B<1

For 8 > 1, the function

=1-p (16)

fo () =z +2b2" + z (cn+d) "
n=3

(17)
cz dz?
+ —_—
— z)2 1-z

=(1-c)z+2(b-0)Z*+ a

demonstrates sharpness of the result. The derivation is similar
to the case 8 < 1 and is omitted. O

Theorem 3. Let 5 € R\ {1} and a > 0. The £ (e, 8)-radius of
f&)=z+Y2, a,2" € o, satisfying the coefficient inequality
la,| < c/nforn > 3 andc > 0 is the real root in (0, 1) of the
equation

[c(l—ﬁ)+|1—‘B|+(2(x+2—‘3)r<§—2b>](1—1’)2
:coc+(1—cx)c(l—r)+[)’c(1—r)210g(+r).

(18)

For B < 1, this number is also the £ («, B)-radius of f € f,,.
The results are sharp.

Proof. By Lemma 1, r,, is the & (o, 8)-radius of functions f €
o, when inequality (7) holds for the real root r, of (18) in
(0, 1). Using (8) and (9) together with

ifz_M_l_r_‘) (19)
= on 7o 2

leads to

i (om2 +(1-a)n- ﬁ) |a,| !

n=2

<2(2a+2-B)br,

« 2 C\ n1

+n;(om +(1—(x)n—ﬁ)<;l>r0
1

=2(2 2-B)b —_——-1-2
(2a+2-B) r0+ccx<(l_r0)2 r())
1

+(1—oc)c<l_r0—1—ro)
log (1 -17,) 7,
(g

:C(ﬁ—1)+(2a+2—/5)r0<2b_§)

, ST +(1-a)c(1—ry)ry+ Pc(l - r0)2 log (1 -1,)

(1- ”0)2”0
=[1-4l.
(20)
To verify sharpness for < 1, consider the function
-2 - Y <2
folz) =2 Z n;nz
(21

:(1+c)z+<§—2b>zz+clog(1—z).



At the root z = 1, in (0, 1) of (18), f, satisfies

2fl(2)  zf) (z))
R
e(“ H@ | f@

o (e croo
=1 < (2 2b>r0(20c+1)+

(1_70)2
c clog(1 —ro)>

1-r1, 7o

clog(1-r,)\"
x<(1+c)+<§—2b>ro+%) =B.
0
(22)

Thus, 7, is the sharp Z(«, §)-radius for f € /. For < 1,
the rational expression in (22) is positive, and therefore

Fh@ @)
fo (@) fo (@)

which shows that 7 is the sharp £ («, f8)-radius for f € o,.
For § > 1, sharpness of the result is demonstrated by the
function f, given by

1| =1-B, (23)

zZ)=2z+ szz + E -z
f‘o ( ) n=3

:(l—c)z+<2b—§>z2—clog(l—z).
O

Remark 4. The results obtained above yield the following
special cases.

(1) Fora =0, =0,c=1d=0,and0 < b < 1,
Theorem 2 yields the radius of starlikeness obtained
by Yamashita [13].

(2) Fora = 0,¢ = 1,and d = 0, Theorem 2 reduces to
Theorem 2.1 in [33, page 3]. Whena = 0, ¢ = 0, and
d = M, Theorem 2 leads to Theorem 2.5 in [33, page
5].

(3) For o = 0, Theorem 3 yields the radius of starlikeness
of order 8 for f € &, obtained by Ravichandran [33,
Theorem 2.8].

The following result of Goel and Sohi [35] will be required
in our investigation of the class of Janowski starlike functions.

Lemma 5 (see [35]). Let -1 < B < A < 1. If f(z) = z +
Yo, a,z" € o satisfies the inequality

Y(-Bn-(-A)lal<a-B ()

n=2

then f € ST [A, B].

The next result finds the sharp I [A, B]-radius for f ¢
4, satisfying the coeflicient inequality |a,| < cn + d.
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Theorem 6. Let -1 < B < A < 1. The ST [A, B]-radius for
f&)=z+Y2,a,2" € o, satisfying the coefficient inequality
la,| <cn+d,n>3andc,d >0, is the real root in (0, 1) of the
equation

[(A-B)(c+d+1)
—@2b-2c-d)2(1-B) -(1-A))r](1-r)
=c(1-B)(1+r)+d(1-B)-c(1-A)(1-7)

—(1-A)d1 -1
(26)

This radius is sharp.

Proof. 1t is evident that r is the ST [A, B]-radius of f €
ifand only if f(ryz)/r, € ST [A, B]. Hence, by Lemma 5, it
suffices to show that

i(u ~Byn—(1-A)|a,|r ' <A-B
= (27)

(-1<B<A<1),

where 7, is the root in (0, 1) of (26). From (8), (9), and (10), it
follows that

Y ((1-Byn—(1-A)|a,|ry

n=2
<2(2(1-B)-(1-A))br,

+i((l-B)n-(l-A))(cn+d)rg*1

n=3

=2(2(1-B)-(1-A))br,

1+7,

1-B -1-4
rel )<<1—r0>3 )

1
d1-B)-c(1-A -1-2
+(d(1-B) - c( ))<(1_r0)2 ro>

—(l—A)d(l_er—l—r())
=(B-A)(c+d)+(2b-2c-d)
x(2(1-B)-(1-A)r,
+(c(1-B)(1+7)
+(d(1-B)=c(1-A))(1-r)
= (1= A (1= re)) x (1-7p) 7

=A-B.
(28)
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The function f; given by (13) shows that the result is
sharp. Indeed, at the point z = r, where r;, is the root in (0, 1)
of (26), the function f, satisfies

£ |
fo (2)

2dr; dry
:<—2(c—b)r0+ oo, 2T )

1-1 (1—r0)2 (1_”0)3

a2\
x<c+1+2(c—b)ro—;2— il ) ,
(1-r)" 1-10

zf, (2)
fo(2)
(c+1)(A=B)+2(c—b)r,(A—2B)
c+1+2(c-b)ry—c/(1 —ro)z—drg/(l—ro)

2cryB

_<c(A—B) N
(1 "’0)2 (1 ‘7’0)3

drl(A-3B)  dr)B )
- +
1-r (1- To)2

=

a2\
X c+1+2(c—b)r0—;2— To .
(1-ry)" 1-1

(29)

Then, (26) yields

2o ||, @] B
G 1‘—|A Bfo(Z) (-1<B<A<1,z=r1),
(30)
or equivalently f, € ST [A, B]. O

Theorem 7. Let -1 < B < A < 1. The ST [A, B]-radius for
f&)=z+Y,2,a,2" € o, satisfying the coefficient inequality
la,| < c¢/n,n > 3 andc > 0, is the real root in (0, 1) of the
equation

((c+1)(A—B)—(2(1—B)—(l—A))r(Zb—%))
x (1-7) 31)

=c(1—B)+c(1—A)(1—r)w.

This radius is sharp.

Proof. By Lemma 5, condition (27) assures that r, is the
ST [A, B]-radius of f € of, where r, is the real root of (31).
Therefore, using (8) and (19) for f € o, yields

Y (A-Byn-(1-A)|a,|ry™"
n=2
<2(2(1-B) - (1 - A))br,
< c\
+;((1—B)n—(1—A))<;>rO !

=2(2(1-B)-(1-A))br,

+c(1—B)(1_lr —1—r0>
0

—c(l—A)(——_—

=c(B—A)+(2(1—B)—(I—A))r0<2b—%)

c(1-B)ry+c(1—A)(1-ry)log(1-ry)
+
(1_"0)7’0

=A-B.
(32)

The result is sharp for the function f,, given by (21). Indeed,
f, satisfies

e
fo(2)

= (c/2-2b)ry + ¢/ (1= 1y) + (clog (1 =1y)) /7y
- (1+¢)+(c/2=2b) 1y + (clog(1—r1y)) /7o
zf, (2)
fo (2)

>

=

:<(1+c)(A—B)+(A—ZB)<§—2b)ro

L ¢B +cAlog(1—r0)>
1-1, 7
log (1-75)\ "
x<(1+c)+<£—2b>ro+M> ,
2 7o

(33)

at the root z = r,, in (0, 1) of (31). Evidently, the function f,
satisfies (30), and hence the result is sharp. O
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